
Eric Benhamou eric.benhamou@dauphine.eu

Remy Belmonte remy.belmonte@dauphine.eu

Masterclass 6

Algorithmic and advanced

Programming in Python

1

Algorithmic and advanced Programming in Python

Outline

1. Generic trees

2. Threaded trees

3. Expression Trees

4. AVL Trees

2

Algorithmic and advanced Programming in Python

Reminder of the objective of this course

• People often learn about data structures out of context

• But in this course you will learn foundational concepts by building a
real application with python and Flask

• To learn the ins and outs of the essential data structure, experiencing in
practice has proved to be a much more powerful way to learn data
structures

3

Algorithmic and advanced Programming in Python

Reminder of previous session

• In Master class 6, we discuss about binary trees

• Question: can you summarize the different type of binary tree
traversals?

4

Algorithmic and advanced Programming in Python

• In the previous class, we discussed about binary trees where each node can have a
maximum of two children and these are represented easily with two pointers.

• But suppose we have a tree with many children at every node and we do not know
how many children a node can have, how do we represent them?

Generic tree?

5

Algorithmic and advanced Programming in Python

How do we represent the tree?

• In the above tree, there are nodes with 6 children, with 3 children, with
2 children, with 1 child, and with zero children (leaves).

• To present this tree we have to consider the worst case (6 children) and
allocate that many child pointers for each node. Based on this, the
node representation can be given as:

6

Algorithmic and advanced Programming in Python

A naïve implementation

7

• But this is way too naïve.

• Question: why? What can we do to improve?

Algorithmic and advanced Programming in Python

Representation of Generic Trees

• Since our objective is to reach all nodes of the tree, a possible solution
to this is as follows:
• At each node link children of same parent (siblings) from left to right.

• Remove the links from parent to all children except the first child.

• Question: how would call this representation?

8

Algorithmic and advanced Programming in Python

• This representation is sometimes called first child/next sibling
representation.

• First child/next sibling representation of the generic tree is shown
above. The actual representation for this tree is:

9

Algorithmic and advanced Programming in Python

Code

• Question: how do this relate to binary tree?

10

Algorithmic and advanced Programming in Python

Link with binary tree!

• This representation indeed converts any generic tree to binary
representation; in practice we use binary trees. We can treat all generic
trees with a first child/next sibling representation as binary trees.

11

Algorithmic and advanced Programming in Python

Implementation of a simple N-ary tree?

12

Algorithmic and advanced Programming in Python

Corresponding code

13

Algorithmic and advanced Programming in Python

And NodeId

14

Algorithmic and advanced Programming in Python

Threaded binary tree traversal

• In earlier class, we have seen that, 𝑝𝑟𝑒𝑜𝑟𝑑𝑒𝑟, 𝑖𝑛𝑜𝑟𝑑𝑒𝑟 𝑎𝑛𝑑 𝑝𝑜𝑠𝑡𝑜𝑟𝑑e𝑟
binary tree traversals used stacks and 𝑙𝑒𝑣𝑒𝑙 𝑜𝑟𝑑𝑒𝑟 traversals used
queues as an auxiliary data structure.

• In this section we will discuss new traversal algorithms which do not
need both stacks and queues. Such traversal algorithms are called

• 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡𝑟𝑒𝑒 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙𝑠 or 𝑠𝑡𝑎𝑐𝑘/𝑞𝑢𝑒𝑢𝑒 − 𝑙𝑒𝑠𝑠 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙𝑠

• Question: What can be the issue with regular binary tree traversals?

15

Algorithmic and advanced Programming in Python

Hint for the question

• Question: What can be the issue with regular binary tree traversals

16

Algorithmic and advanced Programming in Python

Issues with Regular Binary Tree Traversals

• The storage space required for the stack and queue is large.

• The majority of pointers in any binary tree are nil. For example, a
binary tree with 𝑛 nodes has 𝑛 + 1 nil pointers and these were wasted.

• It is difficult to find successor node (preorder, inorder and postorder
successors) for a given node.

17

Algorithmic and advanced Programming in Python

One solution; threaded binary trees

• To solve these problems, one idea is to store some useful information
in NULL pointers. If we observe the previous traversals carefully,
stack/queue is required because we have to record the current position
in order to move to the right subtree after processing the left subtree. If
we store the useful information in nil pointers, then we don’t have to
store such information in stack/queue.

• The binary trees which store such information in nil pointers are called
𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡𝑟𝑒𝑒𝑠. From the above discussion, let us assume
that we want to store some useful information in nil pointers.

• The next question is what to store?

18

Algorithmic and advanced Programming in Python

Threaded Binary Trees

• The common convention is to put predecessor/successor information.
That means, if we are dealing with preorder traversals, then for a given
node, nil left pointer will contain preorder predecessor information and
nil right pointer will contain preorder successor information. These
special pointers are called 𝑡ℎ𝑟𝑒𝑎𝑑𝑠.

19

Algorithmic and advanced Programming in Python

Classifying Threaded Binary Trees

• The classification is based on whether we are storing useful
information in both nil pointers or only in one of them

• If we store predecessor information in nil left pointers only, then we
can call such binary trees 𝑙𝑒𝑓𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡𝑟𝑒𝑒𝑠.

• If we store successor information in nil right pointers only, then we
can call such binary trees 𝑟𝑖𝑔ℎ𝑡 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡𝑟𝑒𝑒𝑠.

• If we store predecessor information in nil left pointers and successor
information in nil right pointers, then we can call such binary trees 𝑓𝑢𝑙
𝑙𝑦 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡𝑟𝑒𝑒𝑠 or simply 𝑡ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡𝑟𝑒𝑒𝑠.

• Note: Fo r the remaining discussion we consider only (𝑓𝑢𝑙𝑙𝑦) 𝑡ℎ𝑟𝑒𝑎𝑑e
𝑑 𝑏𝑖𝑛𝑎𝑟𝑦 𝑡𝑟𝑒𝑒𝑠.

20

Algorithmic and advanced Programming in Python

Types of Threaded Binary Trees

• According to you what are the tree types of threaded binary trees?

21

Algorithmic and advanced Programming in Python

Types of Threaded Binary Trees

• According to you what are the tree types of threaded binary trees?

• Based on above discussion we get three representations for threaded
binary trees.
• 𝑃𝑟𝑒𝑜𝑟𝑑𝑒𝑟 𝑇ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝐵𝑖𝑛𝑎𝑟𝑦 𝑇𝑟𝑒𝑒𝑠: nil left pointer will contain PreOrder

predecessor information and nil right pointer will contain PreOrder successor
information.

• 𝐼𝑛𝑜𝑟𝑑𝑒𝑟 𝑇ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝐵𝑖𝑛𝑎𝑟𝑦 𝑇𝑟𝑒𝑒𝑠: nil left pointer will contain InOrder
predecessor information and nil right pointer will contain InOrder successor
information.

• 𝑃𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟 𝑇ℎ𝑟𝑒𝑎𝑑𝑒𝑑 𝐵𝑖𝑛𝑎𝑟𝑦 𝑇𝑟𝑒𝑒𝑠: nil left pointer will contain PostOrder
predecessor information and nil right pointer will contain PostOrder successor
information.

• Do you see any major difference between these threaded binary trees?

22

Algorithmic and advanced Programming in Python

They are all similar!

• As the representations are similar, for the remaining discussion we will
use InOrder threaded binary trees.

23

Algorithmic and advanced Programming in Python

Threaded Binary Tree structure

• Any program examining the tree must be able to differentiate between
a regular 𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 pointer and a 𝑡ℎ𝑟𝑒𝑎𝑑. To do this, we use two
additional fields in each node, giving us, for threaded trees, nodes of
the following form:

24

Algorithmic and advanced Programming in Python

Difference between Binary Tree and Threaded
Binary Tree Structures
• According to you what are the major difference between Binary Tree

and Threaded Binary Tree Structures?

25

Algorithmic and advanced Programming in Python

Difference between Binary Tree and Threaded
Binary Tree Structures
• According to you what are the major difference between Binary Tree

and Threaded Binary Tree Structures?

• Note: Similarly, we can define preorder/postorder differences as well.

26

Algorithmic and advanced Programming in Python

Difference between Binary Tree and Threaded
Binary Tree Structures
• As an example, let us try representing a tree in inorder threaded binary

tree form. The tree below shows what an inorder threaded binary tree
will look like. The dotted arrows indicate the threads. If we observe,
the left pointer of left most node (2) and right pointer of right most
node (31) are hanging.

27

Algorithmic and advanced Programming in Python

What should leftmost and rightmost pointers point
to?
• In the representation of a threaded binary tree, it is convenient to use a

special node 𝐷𝑢𝑚𝑚𝑦 which is always present even for an empty tree.
Note that right tag of Dummy node is 1 and its right child points to
itself.

28

Algorithmic and advanced Programming in Python

Finding Inorder Successor in Inorder Threaded
Binary Tree
• To find inorder successor of a given node without using a stack,

assume that the node for which we want to find the inorder successor
is 𝑃.

• Strategy: If 𝑃 has a no right subtree, then return the right child of 𝑃. If
𝑃 has right subtree, then return the left of the nearest node whose left
subtree contains 𝑃.

29

Algorithmic and advanced Programming in Python

Corresponding code

• Question: What is the Time Complexity and Space Complexity?

30

Algorithmic and advanced Programming in Python

Corresponding code

• Question: What is the Time Complexity and Space Complexity?

• Time Complexity: O(𝑛). Space Complexity: O(1).

31

Algorithmic and advanced Programming in Python

Expression Trees

• A tree representing an expression is called an 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑡𝑟𝑒𝑒. In
expression trees, leaf nodes are operands and non-leaf nodes are
operators.

• That means, an expression tree is a binary tree where internal nodes
are operators and leaves are operands. An expression tree consists of
binary expression. But for a unary operator, one subtree will be empty.

32

Algorithmic and advanced Programming in Python

Expression trees

• The figure below shows a simple expression tree for (A + B * C) / D.

33

Algorithmic and advanced Programming in Python

Expression trees examples

• Example: Assume that one symbol is read at a time. If the symbol is an
operand, we create a tree node and push a pointer to it onto a stack. If
the symbol is an operator, pop pointers to two trees T1 and T2 from
the stack (T1 is popped first) and form a new tree whose root is the
operator and whose left and right children point to T2 and T1
respectively. A pointer to this new tree is then pushed onto the stack.

• As an example, assume the input is A B C * + D /. The first three
symbols are operands, so create tree nodes and push pointers to them
onto a stack as shown below.

34

Algorithmic and advanced Programming in Python

Steps

• Next, an operator '*' is read, so two pointers to trees are popped, a new
tree is formed and a pointer to it is pushed onto the stack.

35

Algorithmic and advanced Programming in Python

Steps

• Next, an operator '+' is read, so two pointers to trees are popped, a new
tree is formed and a pointer to it is pushed onto the stack.

• Next, an operand ‘D’ is read, a one-node tree is created and a pointer
to the corresponding tree is pushed onto the stack.

36

Algorithmic and advanced Programming in Python

Next

• Finally, the last symbol (‘/’) is read, two trees are merged and a pointer
to the final tree is left on the stack.

37

Algorithmic and advanced Programming in Python

XOR Trees

• This concept is similar to 𝑚𝑒𝑚𝑜𝑟𝑦 𝑒f𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑑𝑜𝑢𝑏𝑙𝑦 𝑙𝑖𝑛𝑘𝑒𝑑 𝑙𝑖𝑠𝑡𝑠 of
𝐿𝑖𝑛𝑘𝑒𝑑 𝐿𝑖𝑠𝑡𝑠 chapter. Also, like threaded binary trees this
representation does not need stacks or queues for traversing the trees.
This representation is used for traversing back (to parent) and forth (to
children) using ⊕ operation. To represent the same in XOR trees, for
each node below are the rules used for representation:

• Each nodes left will have the ⊕ of its parent and its left children.

• Each nodes right will have the ⊕ of its parent and its right children.

• The root nodes parent is nil and also leaf nodes children are nil nodes.

38

Algorithmic and advanced Programming in Python

XOR Trees

• Based on the above rules and discussion, the tree can be represented
as:

39

Algorithmic and advanced Programming in Python

XOR Trees

• The major objective of this presentation is the ability to move to parent as
well to children. Now, let us see how to use this representation for
traversing the tree. For example, if we are at node B and want to move to its
parent node A, then we just need to perform ⊕ on its left content with its
left child address (we can use right child also for going to parent node).

• Similarly, if we want to move to its child (say, left child D) then we have to
perform ⊕ on its left content with its parent node address. One important
point that we need to understand about this representation is: When we are
at node B, how do we know the address of its children D? Since the
traversal starts at node root node, we can apply ⊕ on root’s left content
with nil.

• As a result we get its left child, B. When we are at B, we can apply ⊕ on
its left content with A address.

40

Algorithmic and advanced Programming in Python

Binary Search Trees (BSTs)

• Why Binary Search Trees?

• In previous sections we have discussed different tree representations and in all of
them we did not impose any restriction on the nodes data.

• As a result, to search for an element we need to check both in left subtree and in
right subtree. Due to this, the worst-case complexity of search operation is O(𝑛).

• In this section, we will discuss another variant of binary trees: Binary Search Trees
(BSTs).

• As the name suggests, the main use of this representation is for 𝑠𝑒𝑎𝑟𝑐ℎ𝑖𝑛𝑔. In this
representation we impose restriction on the kind of data a node can contain.

• As a result, it reduces the worst-case average search operation to O(𝑙𝑜𝑔𝑛).

41

Algorithmic and advanced Programming in Python

Binary Search Tree Property

• In binary search trees, all the left subtree elements should be less than
root data and all the right subtree elements should be greater than root
data. This is called binary search tree property. Note that, this property
should be satisfied at every node in the tree.

• The left subtree of a node contains only nodes with keys less than the nodes
key.

• The right subtree of a node contains only nodes with keys greater than the
nodes key.

• Both the left and right subtrees must also be binary search trees.

42

Algorithmic and advanced Programming in Python

Binary Search Tree Property

• Example: The left tree is a binary search tree and the right tree is not a
binary search tree (at node 6 it’s not satisfying the binary search tree
property).

43

Algorithmic and advanced Programming in Python

Binary Search Tree Declaration

• There is no difference between regular binary tree declaration and
binary search tree declaration. The difference is only in data but not in
structure. But for our convenience we change the structure name as:

44

Algorithmic and advanced Programming in Python

Operations on Binary Search Trees

• Main operations: Following are the main operations that are supported
by binary search trees:

• Find/ Find Minimum / Find Maximum element in binary search trees

• Inserting an element in binary search trees

• Deleting an element from binary search trees

• Auxiliary operations: Checking whether the given tree is a binary
search tree or not:

• Finding kth -smallest element in tree

• Sorting the elements of binary search tree and many more

45

Algorithmic and advanced Programming in Python

Important Notes on Binary Search Trees

• Since root data is always between left subtree data and right subtree
data, performing inorder traversal on binary search tree produces a
sorted list.

• While solving problems on binary search trees, first we process left
subtree, then root data, and finally we process right subtree. This
means, depending on the problem, only the intermediate step
(processing root data) changes and we do not touch the first and third
steps.

46

Algorithmic and advanced Programming in Python

Important Notes on Binary Search Trees

• If we are searching for an element and if the left subtree root data is
less than the element we want to search, then skip it.

• The same is the case with the right subtree.. Because of this, binary
search trees take less time for searching an element than a regular
binary trees. In other words, the binary search trees consider either left
or right subtrees for searching an element but not both.

47

Algorithmic and advanced Programming in Python

Important Notes on Binary Search Trees

• The basic operations that can be performed on binary search tree
(BST) are insertion of element, deletion of element, and searching for
an element. While performing these operations on BST the height of
the tree gets changed each time. Hence there exists variations in time
complexities of best case, average case, and worst case.

• The basic operations on a binary search tree take time proportional to
the height of the tree. For a complete binary tree with node n, such
operations runs in O(logn) worst-case time. If the tree is a linear chain
of n nodes (skew-tree), however, the same operations takes O(n)
worst-case time.

48

Algorithmic and advanced Programming in Python

Finding an Element in Binary Search Trees

• Find operation is straightforward in a BST. Start with the root and
keep moving left or right using the BST property. If the data we are
searching is same as nodes data then we return current node.

• If the data we are searching is less than nodes data then search left
subtree of current node; otherwise search right subtree of current node.
If the data is not present, we end up in a NULL link.

49

Algorithmic and advanced Programming in Python

Finding an Element in Binary Search Trees

50

• Time Complexity: O(𝑛), in worst case (when BST is a skew tree).
Space Complexity: O(𝑛), for recursive stack. 𝑁𝑜𝑛 𝑟𝑒𝑐𝑢𝑟𝑠𝑖𝑣𝑒 version
of the above algorithm can be given as:

• Time Complexity: O(𝑛). Space Complexity: O(1).

Algorithmic and advanced Programming in Python

Finding Minimum Element in Binary Search Trees

• In BSTs, the minimum element is the left-most node, which does not
has left child. In the BST below, the minimum element is 𝟒.

51

Algorithmic and advanced Programming in Python

• In BSTs, the maximum element is the right-most node, which does not
have right child. In the BST below, the maximum element is 𝟏𝟔.

• Time Complexity: O(𝑛), in worst case (when BST is a 𝑟𝑖𝑔ℎ𝑡 𝑠𝑘𝑒𝑤
tree). Space Complexity: O(𝑛), for recursive stack.

Finding Maximum Element in BST

52

Algorithmic and advanced Programming in Python

Where is Inorder Predecessor and Successor?

• Where is Inorder Predecessor and Successor? Where is the inorder
predecessor and successor of node 𝑋 in a binary search tree assuming
all keys are distinct?

• If 𝑋 has two children then its inorder predecessor is the maximum
value in its left subtree and its inorder successor the minimum value in
its right subtree.

53

Algorithmic and advanced Programming in Python

Where is Inorder Predecessor and Successor?

• If it does not have a left child, then a node’s inorder predecessor is its
first left ancestor.

54

Algorithmic and advanced Programming in Python

Inserting an Element from Binary Search Tree

• To insert 𝑑𝑎𝑡𝑎 into binary search tree, first we need to find the
location for that element. We can find the location of insertion by
following the same mechanism as that of 𝑓𝑖𝑛𝑑 operation. While
finding the location, if the 𝑑𝑎𝑡𝑎 is already there then we can simply
neglect and come out. Otherwise, insert 𝑑𝑎𝑡𝑎 at the last location on
the path traversed.

55

Algorithmic and advanced Programming in Python

Inserting an Element from Binary Search Tree

• As an example let us consider the following tree. The dotted node
indicates the element (5) to be inserted. To insert 5, traverse the tree
using 𝑓𝑖𝑛𝑑 function. At node with key 4, we need to go right, but there
is no subtree, so 5 is not in the tree, and this is the correct location for
insertion.

56

Algorithmic and advanced Programming in Python

Inserting node code

• Note: In the above code, after inserting an element in subtrees, the tree
is returned to its parent. As a result, the complete tree will get updated.

• Time Complexity: O(𝑛). Space Complexity: O(𝑛), for recursive stack.
For iterative version, space complexity is O(1).

57

Algorithmic and advanced Programming in Python

Deleting an Element from Binary Search Tree

• The delete operation is more complicated than other operations. This is
because the element to be deleted may not be the leaf node. In this
operation also, first we need to find the location of the element which
we want to delete.

• Once we have found the node to be deleted, consider the following
cases:

• If the element to be deleted is a leaf node: return 𝑛𝑖𝑙 to its parent. That
means make the corresponding child pointer 𝑛𝑖𝑙. In the tree below to
delete 5, set 𝑛𝑖𝑙 to its parent node 2.

58

Algorithmic and advanced Programming in Python

Deleting node

• If the element to be deleted has one child: In this case we just need to
send the current node’s child to its parent. In the tree below, to delete
4, 4 left subtree is set to its parent node 2.

59

Algorithmic and advanced Programming in Python

Deleting node

• If the element to be deleted has both children: The general strategy is
to replace the key of this node with the largest element of the left
subtree and recursively delete that node (which is now empty). The
largest node in the left subtree cannot have a right child, so the second
𝑑𝑒𝑙𝑒𝑡𝑒 is an easy one.

60

Algorithmic and advanced Programming in Python

Deleting node

• As an example, let us consider the following tree. In the tree below, to
delete 8, it is the right child of the root. The key value is 8. It is
replaced with the largest key in its left subtree (7), and then that node
is deleted as before (second case).

61

Algorithmic and advanced Programming in Python

AVL (Adelson-Velskii and Landis) Trees

• In 𝐻𝐵(𝑘), if 𝑘 = 1 (if balance factor is one), such a binary search tree
is called an 𝐴𝑉𝐿 𝑡𝑟𝑒𝑒. That means an AVL tree is a binary search tree
with a 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 condition: the difference between left subtree height
and right subtree height is at most 1.

62

Algorithmic and advanced Programming in Python

Properties of AVL Trees

• A binary tree is said to be an AVL tree, if:

• It is a binary search tree, and

• For any node 𝑋, the height of left subtree of 𝑋 and height of right subtree of 𝑋
differ by at most 1.

63

Algorithmic and advanced Programming in Python

AVL Trees

• As an example, among the above binary search trees, the left one is
not an AVL tree, whereas the right binary search tree is an AVL tree.

•

64

Algorithmic and advanced Programming in Python

Minimum/Maximum Number of Nodes

• For simplicity let us assume that the height of an AVL tree is ℎ and 𝑁
(ℎ) indicates the number of nodes in AVL tree with height ℎ. To get the
minimum number of nodes with height ℎ, we should fill the tree with
the minimum number of nodes possible. That means if we fill the left
subtree with height ℎ − 1 then we should fill the right subtree with
height ℎ − 2. As a result, the minimum number of nodes with height ℎ
is:

N(ℎ) = 𝑁(ℎ − 1) + 𝑁(ℎ − 2) + 1

65

Algorithmic and advanced Programming in Python

• In the above equation:

• 𝑁(ℎ − 1) indicates the minimum number of nodes with height ℎ − 1.

• 𝑁(ℎ − 2) indicates the minimum number of nodes with height ℎ − 2.

• In the above expression, “1” indicates the current node.

• We can give 𝑁(ℎ − 1) either for left subtree or right subtree. Solving
the above recurrence gives:

𝑁(ℎ) = O(1.618h) ⟹ ℎ = 1.44 𝑙𝑜𝑔𝑛 ≈ O(𝑙𝑜𝑔𝑛)

66

Algorithmic and advanced Programming in Python

• The above expression defines the case of full binary tree. Solving the
recurrence we get:

𝑁(ℎ) = O(2h) ⟹ ℎ = 𝑙𝑜𝑔𝑛 ≈O(𝑙𝑜𝑔𝑛)

• In both the cases, AVL tree property is ensuring that the height of an
AVL tree with 𝑛 nodes is O(𝑙𝑜𝑔𝑛).

67

Algorithmic and advanced Programming in Python

AVL Tree Declaration

• Since AVL tree is a BST, the declaration of AVL is similar to that of
BST. But just to simplify the operations, we also include the height as
part of the declaration.

68

Algorithmic and advanced Programming in Python

Finding the Height of an AVL tree

69

Algorithmic and advanced Programming in Python

Rotations

• When the tree structure changes (e.g., with insertion or deletion), we
need to modify the tree to restore the AVL tree property. This can be
done using single rotations or double rotations. Since an
insertion/deletion involves adding/deleting a single node, this can only
increase/decrease the height of a subtree by 1.

• So, if the AVL tree property is violated at a node 𝑋, it means that the
heights of left(𝑋) and right(𝑋) differ by exactly 2.

• This is because, if we balance the AVL tree every time, then at any
point, the difference in heights of left(𝑋) and right(𝑋) differ by exactly
2. Rotations is the technique used for restoring the AVL tree property.
This means, we need to apply the rotations for the node 𝑋.

70

Algorithmic and advanced Programming in Python

Rotations

• Observation: One important observation is that, after an insertion, only
nodes that are on the path from the insertion point to the root might have
their balances altered, because only those nodes have their subtrees altered.
To restore the AVL tree property, we start at the insertion point and keep
going to the root of the tree.

• While moving to the root, we need to consider the first node that is not
satisfying the AVL property. From that node onwards, every node on the
path to the root will have the issue.

• Also, if we fix the issue for that first node, then all other nodes on the path
to the root will automatically satisfy the AVL tree property. That means we
always need to care for the first node that is not satisfying the AVL property
on the path from the insertion point to the root and fix it.

71

Algorithmic and advanced Programming in Python

Types of Violations

• The tree can be balanced by applying rotations. Rotation is required
only if, the balance factor of any node is disturbed upon inserting the
new node, otherwise the rotation is not required. Let us assume the
node that must be rebalanced is 𝑋. Since any node has at most two
children, and a height imbalance requires that 𝑋’𝑠 two subtree heights
differ by two, we can observe that a violation might occur in four
cases:

1. An insertion into the left subtree of the left child of 𝑋.

2. An insertion into the right subtree of the left child of 𝑋.

3. An insertion into the left subtree of the right child of 𝑋.

4. An insertion into the right subtree of the right child of 𝑋.

72

Algorithmic and advanced Programming in Python

Single Rotations (case 1 & 4)

• Left Left Rotation (LL Rotation) [Case-1]:

• In the case below, node 𝑋 is not satisfying the AVL tree property. As
discussed earlier, the rotation does not have to be done at the root of a
tree. In general, we start at the node inserted and travel up the tree,
updating the balance information at every node on the path.

73

Algorithmic and advanced Programming in Python

Single Rotations

• For example, in the figure above, after the insertion of 7 in the
original AVL tree on the left, node 9 becomes unbalanced. So, we do a
single left-left rotation at 9. As a result we get the tree on the right.

• Time Complexity: O(1). Space Complexity: O(1).

74

Algorithmic and advanced Programming in Python

Code

75

Algorithmic and advanced Programming in Python

Right Right Rotation (RR Rotation) [Case-4]

• Right Right Rotation (RR Rotation) [Case-4]: In this case, node 𝑋 is
not satisfying the AVL tree property.

76

Algorithmic and advanced Programming in Python

Double Rotations (case 2 & 3)

• Left Right Rotation (LR Rotation) [Case-2]: For case-2 and case-3
single rotation does not fix the problem. We need to perform two
rotations. As an example, let us consider the following tree: Insertion
of 7 is creating the case-2 scenario and right-side tree is the one after
double rotation.

77

Algorithmic and advanced Programming in Python

Double Rotations

78

Algorithmic and advanced Programming in Python

Right Left Rotation case 3

• [Case-3]: Similar to case-2, we need to perform two rotations to fix
this scenario.

79

Algorithmic and advanced Programming in Python

• As an example, let us consider the following tree: The insertion of 6 is
creating the case-3 scenario and the right-side tree is the one after the
double rotation.

80

Algorithmic and advanced Programming in Python

Insertion an Element into an AVL tree

• Insertion in AVL tree is performed in the same way as it is performed
in a binary search tree. After inserting the element, we just need to
check whether there is any height imbalance. If there is an imbalance,
call the appropriate rotation functions.

• The new node is added into AVL tree as the leaf node. However, it
may lead to violation in the AVL tree property and therefore the tree
may need balancing.

• The tree can be balanced by applying rotations. Rotation is required
only if, the balance factor of any node is disturbed upon inserting the
new node, otherwise the rotation is not required. As discussed in the
previous section, depending upon the type of insertion, the rotations
are categorized into four categories.

81

Algorithmic and advanced Programming in Python

Deleting an Element from AVL tree

• Deleting a node from an AVL tree is similar to that in a binary search
tree. Deletion may disturb the balance factor of an AVL tree and
therefore the tree needs to be rebalanced in order to maintain the
AVLness. For this purpose, we need to perform rotations.

82

Algorithmic and advanced Programming in Python

Single Rotations

• Left Left Rotation (LL Rotation) [Case-1]: In the case below, node
𝑋 is not satisfying the AVL tree property. As discussed earlier, the
rotation does not have to be done at the root of a tree. In general, we
start at the node inserted and travel up the tree, updating the balance
information at every node on the path.

83

Algorithmic and advanced Programming in Python

In Lab session

• You will play with the concepts and starts getting more and more
familiar with trees

• This can be useful for your project

• Lab is done by Remy Belmonte

84

